Scalability,
Availability &
Stability
Patterns

Jonas Boner

CTO Typesafe
twitter: @jboner

} \—
{ In-memory storage |
(ata Cride < rabie sage)

- Key Value databases

| Document databases |
(NS Grah dwatases
* ,m’ " Datastructure databases |

Outline

~{ Partitioning |
¢ ————
D Denormalzation
\{W + Rich domain model antipattern

‘
HTTP caching | (on)
- Consistent/Atomic data
-<{£nntudly Consistent data
1 Message-Passing Concurrency
' { Software Transactional Memory

Master-Slave - \

Master-Master j{ﬂnplladon} -

Availability |
Buddy replication -

[_C"‘““ }\ ~;ﬁ'f§€alab7hty. Avallibility & Stability P;ueri{{_‘i;»f {S“"""“V—':‘
Timeouts .| ,
Let it cruhlSupcwison I '
(Crash early | Stability [
Bulkheads
Steady state (clean up resources) ||
SEDA | Throttling}

| Publish-Subscribe |

[(Poe-r-ro)
(=
|
{Fire-forget |
-<-{M-Reoe~!-£nmlv]
Enterprise Service Bus |

-{Domain Events

| Event Stream Processing|
/{Rouw-mbh allocation)
{Random allocation

/{Em(-ormﬂ Architecture

\ Load-balancingl{ ot alocation)

- Dynamic load balancing < (Work-donating
k{Quﬂle-demh querying |
A SPMD pattern |

- Master/Worker pattern’
Paraliel Computing 4 Loop Paralledsm pattern
{Fork/Join pantern
*{MapReduce pattern

Qutline

Write-behind
| Write-through

| Distributed Caching / LLL
Eviction policies < FIFO
UFO

Peer-To-Peer

In-memory storage
' Durable storage

{Data Crids |

| Key Value databases

| Document databases

| Graph databases
Datastructure databases

’ NOSQL <

|~ Service of Record

. State Sh‘rd.ng Partitioning
\ Replication
RDBMS -

| Denormalization
’ OR/M + Rich domain mode! antipattern '
Reverse Proxy
CON
{ Consistent/Atomic data
{ Eventually Consistent data

HTTP caching |«

| CAP theorem

{ Message-Passing Concurrency

{ Software Transactional Memory
| Concurrency <
{ Datafiow Concurrency

Shared-State Concurrency
| Partitioning

Scalability +
ty & Stability Patterns | Replication

F(w{te-behind]

- Write-through |

Distributed Caching ALLL

: |\{Evlctlon pollcles}ﬁ—-ﬁl»‘ol
I n e t\ < UFO
| Peer-To-Peer

: In-memory storage |
Daia CndsK 'Durable storage |

/{Key Value databases
{Document databases]
'NOSQ
/ { | Graph databases

\(Datastructure databases |
Partitioning |

'/{Service of RecordJﬂ

g
l

\{ORM + Rich domain model antipattern

\{ cachi ngj <~ Reverse Proxy

{Consistem/Atomic data

CAP theorem

\[){{ Eventually Consistent data|

‘. { Message-Passing Concurrency
-{Soﬂware Transactional Memory |

Conc

\{ urrendy {{ Dataflow Concurrency

} K{Shared-Sme Concurrency |

f\{panmoniogJ

~————__ ,{Scalability X
attems P

1

/{Publish-Subscribe)

/{Messaglng){{(:;:-:w::}

\{Request-ltepwj

m :{Flre-forget
/[Event-oriven Architecture " Actors Fire-Receive-Eventually |
{Enterprise Service Bus |
" Domain Events |
*| Event Stream Processing |
\:\{Event Sourcing | |
‘< *Command & Query Responsibility Segregation (CQRS)
- Round-robin allocation|
_{Random allocation

' Weighted allocation |

A/

|
*{ Load-balanci
| jLos =S} - Work-stealing |

\(< Dynamic load balancing —Work-donating |
(Queue-depth querying |

| SPMD pattern |
- Master/Worker pattern’

| Loop Parallelism pattern |
*{ Fork/Join pattern |

MapReduce pattern

Parallel Computing

—

Master-Slave
- ~ Replicati
Master-Master | Replicat °“}}{Avanabilitv

‘Buddy replication
| Fail-over |-

Circuit Breaker}\
:‘I‘imeouts}\\
Let it crash/Supervisors

|Crash early 3 Stability
‘Bulkheads

Steady state (clean up resources) |~

SEDA}—Throttling}

| - _—
<_Scalability, Availibility & Stability Patter

Introduction

Managing Overload

|

Scale up vs Scale out!

General
recommendations

® |[mmutability as the default
® Referential Transparency (FP)
® [aziness

® Think about your data:

e Different data need different guarantees

-

l . Scalability Trade-offs

There is no
Free Lunch.

Trade-offs

® Performance vs Scalability
® [atency vs Throughput

® Availability vs Consistency

Performance
VS
Scalability

How do | know if | have a
performance problem!?

How do | know if | have a
performance problem!?

If your system is
slow for a single user

How do | know if | have a
scalability problem?

How do | know if | have a
scalability problem?

If your system is
fast for a single user
but slow under heavy load

Latency
VS
Throughput

You should strive for

maximal throughput
with
acceptable latency

Availability
VS
Consistency

Brewer’s

CAP

theorem

You can only pick 2

Consistency

Availability

Partition tolerance

At a given point in time

Centralized system

® |n a centralized system (RDBMS etc.)

we don’t have network partitions, e.g.
Pin CAP

® Soyou get both:
® Availability

® Consistency

_Atomic

_Consistent

_ |solated

_Durable

Distributed system

® |n a distributed system we (will) have
network partitions, e.g. P in CAP

® So you get to ONly pick one:
® Availability

® Consistency

CAP in practice:

® _.there are only two types of systems:

. CP
2. AP

® ._.there is only one choice to make. In
case of a network partition, what do
you sacrifice!

|. C: Consistency
2. A:Availability

_ Basically Available

_Soft state

_Eventually consistent

Eventual Consistency

...is an interesting trade-off

Eventual Consistency

...is an interesting trade-off

But let’s get back to that later

Availability Patterns

Availability Patterns

*Fail-over
*Replication

* Master-Slave

* Tree replication

* Master-Master
* Buddy Replication

VWWhat do we mean with
Availability?

HA Calc

o 99,999

tem uptime percentage

Uptime: 31535684.64 seconds / Yr

Downtime: 315.36 seconds / Yr
Units:

o D @

o

Fail-over

leenks.com

Fail-over

Copyright
Michael Nygaard

Fail-over

Normal
Operation

Service
restored

Failure
occurs

But fail-over is not always this simple

Copyright
Michael Nygaard

Normal

Operation

Failure
detected,

Failure

Failure occurred, Notification

ocecurs delivered

failover not
initiated

not yet
detected

Activate passive

de
Waiting for Passive node Failover
passive node activation fails Unsuccessful

Passive node
activated

Passive node
activated,
traffic not

Succeeded

Copyright
Michael Nygaard

Tra
re-redi
fa

Failure Failure

Normal Failure occurred, Notification detected,
Operation J/ ©°curs not yet Sasiered failover not

detected initiated

Activate passive
de
node Waiting for Passive node Failover
. passive node activation fails Unsuccessful
reactivated
Data Yesynch Passive node Traffic redirection
completes activated dils

Passive node
activated,
ffic traffic not
rection

Is

\
In}\jate
failback

Failback
Unsuccessful

\
\

Primary
node
restored, not
activated

Primary node
Succeeded

Copyright
Michael Nygaard

Network fail-over

10.0.0.11

10.0.0.10 (- _J

L1a

10.0.0.254
10.0.1.254 | J 10.0.0.253

10.0.0.252

10.0.1.252 switchB 10.0.1.253
10.0.1.20 10.0.1.21

TCserverA TCserverB
Trunked Switch)
Interconnect w/VRRP _anary_ Network Standby Network
Link Link
or HSRP

-

- -

. : |
Fenias e

ey

R RN BB BN BN B

3

&

\
—
Nyt

-
Ahiwm

r

Replication

® Active replication - Push

® Passive replication - Pull

® Data not available, read from peer,
then store it locally

® Works well with timeout-based
caches

Replication

® Master-Slave replication
® [ree Replication
® Master-Master replication

® Buddy replication

Master-Slave Replication

—————————————————

Reads/Writes ! :
Client —>| Master :
: Replication

Reads .
Client —>| Slave

Master-Slave Replication

ITree Replication

Reads/Writes

—— o ———

T e — - - — - - - e -

Replication
‘ Slave \ Slavel ‘ Slave | !
Master .

Replication :
VF Y w ;

‘ Slave \ ‘ Slave \ ‘ Slave |

———

Master-Master Replication

—————————————————

Reads/Writes ! :
Client —>| Master :
: Replication

Reads/Writes !
Client —>| Master

Buddy Replication

4)
Node B
Data B
Backup A
Replication/v_/\Rezlication
4 R ~ A
Node A Node C
Data A Data C
Backup E Backup B
Replication Replication
4 A 4 A
Node E Node D
Data E < Data D
Backup D o Backup C
Replication
E E

Buddy Replication

(A

Node B
DataB + A
Backup E

\Rezlication
4 R

Node C
Data C
Replication Backup B + A
Replication
4 N - \
Node E Node D
Data E <l Data D
Backup D o Backup C
Replication

H H

' Scalability Patterns:

State

Scalability Patterns: State

* Partitioning

*HTTP Caching

* RDBMS Sharding

* NOSQL

* Distributed Caching
* Data Grids

* Concurrency

HTTP Caching

Reverse Proxy

® Varnish

® Squid

® rack-cache

® Pound

® Nginx

® Apache mod proxy

® Traffic Server

HTTP Caching

CDN, Akamai

' Servers
— b
& Visitors

Generate Static Content

Precompute content

® Homegrown + cron or Quartz
® Spring Batch

® Gearman

® Hadoop

® Google Data Protocol

® Amazon Elastic MapReduce

HTTP Caching

First request

\ Ba«w]

P—

"Helle world"

P

Gt MAX"AGE header)

T

‘ Alice Cache
67&’T_ / W&IQOMQ_ \\
— 7
GET /welcome >
FO0O Ok
Co.c:he:Qon-rr’olz »\ax*age_FGOO
[Helle world!
N
FO0O Ok
Cache~Control: »\ax"ageFGOO
Hello world! |
N — 1
~
Alice Cache

—

Eacl(end

Bob

HTTP Caching

Subsequent request

GET {uﬁjgo»\e_

Cache

N

(é\u

3OO0 oK
Agej IO

che~Control: »\ax'ageFGOO

Helle world!

Bob

C— ——— —
i dad L R————— L —

.. becavse the cache is Fresh @

Ths does not hagpen >

Cache

\ Backend

Bacl(e;ﬂal]

~ Service of Record
SoR

Service of Record

® Relational Databases (RDBMS)
® NOSQL Databases

How to

scale out
RDBMS?

wal - .
3P
@

Sharding

® Partitioning

® Replication

Sharding: Partitioning

arding: Replication

Application

User[Adam)]

User [A-C] User [D-F]
User [D-F] User [A-C]

User [G-l] User [N1-M1]
User{J-L) User [N2-M2]

ORM + rich domain model

anti-pattern

® Attempt:
® Read an object from DB

® Result:

® You sit with your whole database in your lap

Think about your data
Think again

® When do you need ACID?
® When is Eventually Consistent a better fit?

® Different kinds of data has different needs

When is
a RDBMS

not

good enough!

Scaling reads
to a RDBMS

s hard

Scaling writes
to a RDBMS

s impossible

Do we

really need
a RDBMS!?

Do we

really need
a RDBMS!?

Sometimes...

Do we

really need
a RDBMS!?

Do we

really need
a RDBMS?

But many times we don’t

o

’ |' NOSQL

(Not Only SQL)

NOSQL

* Key-Value databases

* Column databases

* Document databases

* Graph databases

* Datastructure databases

Who's ACID!?

® Relational DBs (MySQL, Oracle, Postgres)
® Object DBs (Gemstone, db40)

® Clustering products (Coherence,
Terracotta)

® Most caching products (ehcache)

Who's BASE!?

Distributed databases

® Cassandra
® Riak

® Voldemort
® Dynomite,
® SimpleDB

® etc.

NOSQL in the wild

* Google: Bigtable

* Amazon: Dynamo

* Amazon: SimpleDB

* Yahoo: HBase

* Facebook: Cassandra
* LinkedIn: Voldemort

But first some background...

Chord & Pastry

* Distributed Hash Tables (DHT)

* Scalable

* Partitioned

* Fault-tolerant
* Decentralized
* Peer to peer

* Popularized

* Node ring
* Consistent Hashing

Node ring with Consistent Hashing

m=2 m=2

Find data in log(N) jumps

Bigtable

“How can we build a DB on top of Google
File System?”

* Paper: Bigtable: A distributed storage system
for structured data, 2006

* Rich data-model, structured storage
* Clones:

HBase

Hypertable

Neptune

Dynamo

“How can we build a distributed
hash table for the data center?”

* Paper: Dynamo: Amazon’s highly available key-
value store, 2007

* Focus: partitioning, replication and availability
* Eventually Consistent
* Clones:

Voldemort

Dynomite

Types of NOSQL stores

® Key-Value databases (Voldemort, Dynomite)

® Column databases (Cassandra,Vertica, Sybase |1Q)
® Document databases (MongoDB, CouchDB)

® Graph databases (Neo4],AllegroGraph)

® Datastructure databases (Redis, Hazelcast)

_—
.

-

I ~ Distributed Caching

Distributed Caching

* Write-through

* Write-behind

* Eviction Policies

* Replication

* Peer-To-Peer (P2P)

VWVrite-through

3. Return to user

1. Write to cache

Cache

2. Store in DB

e

DB

Write-behind

3. Return to user

1. Write to cache
2. Add event to queue

Event processor

4. Asynchronously: select and execute event

Eviction policies

® TTL (time to live)
® Bounded FIFO (first in first out)
® Bounded LIFO (last in first out)

® Explicit cache invalidation

Peer- [o-Peer

® Decentralized

I”

® No “special” or “blessed” nodes

® Nodes can join and leave as they please

Distributed Caching

Products

* EHCache
*|Boss Cache

e OSCache
* memcached

memcached

® Very fast

® Simple

® Key-Value (string -> binary)
® Clients for most languages

® Distributed

® Not replicated - so |/N chance
for local access in cluster

Data Grids / Clustering

Data Grids/Clustering

Parallel data storage

® Data replication

® Data partitioning

® Continuous availability
® Data invalidation

® [ail-over
e C+Pin CAP

Data Grids/Clustering

Products

® Coherence
® [Jerracotta
® GigaSpaces
® GemStone
® Tibco Active Matrix

® Hazelcast

Concurrency

Concurrency

* Shared-State Concurrency

* Message-Passing Concurrency

* Dataflow Concurrency

* Software Transactional Memory

Shared-State
Concurrency

Shared-State Concurrency

* Everyone can access anything anytime
* Jotally indeterministic

* Introduce determinism at well-defined
places...

*...using locks

Shared-State Concurrency

* Problems with locks:

* Locks do not compose

* Taking too few locks

* Taking too many locks

* Taking the wrong locks

* Taking locks in the wrong order
* Error recovery is hard

Shared-State Concurrency

Please use java.util.concurrent.*

« ConcurrentHashMap

« BlockingQueue

« ConcurrentQueue

« ExecutorService

« ReentrantReadWritelLock
« CountDownLatch

« ParallelArray

« and much much more..

Message-Passing
Concurrency

Actors

* Originates in a 1973 paper by Carl
Hewitt

* Implemented in Erlang, Occam, Oz
* Encapsulates state and behavior

e Closer to the definition of OO
than classes

Actors

* Share NOTHING

* |solated lightweight processes
* Communicates through messages
* Asynchronous and non-blocking
* No shared state
... hence, nothing to synchronize.

* Each actor has a mailbox (message queue)

Actors

* Easier to reason about
* Raised abstraction level
 Easier to avoid
—Race conditions
—Deadlocks
—Starvation
—Live locks

Actor libs for the |VM

* Akka (Java/Scala)

» scalaz actors (Scala)
» Lift Actors (Scala)

* Scala Actors (Scala)
* Kilim (Java)

- Jetlang (Java)

* Actor’s Guild (Java)
* Actorom (Java)

* Functionaljava (Java)
* GPars (Groovy)

Dataflow
Concurrency

Dataflow Concurrency

e Declarative
e Nlo observable non-determinism

e Data-driven — threads block until
data is available

 On-demand, lazy

e No difference between:

e Concurrent &
* Sequential code

e Limitations: can’t have side-effects

Software
Transactional Memory

STM: overview

* See the memory (heap and stack)
as a transactional dataset

e Similar to a database
* begin
® commit
e abort/rollback

e [ransactions are retried
automatically upon collision

* Rolls back the memory on abort

STM: overview

* Transactions can nest

* Transactions compose (yipee!!)
atomic {

atomic {

¥
¥

STM: restrictions

All operations in scope of
a transaction:
* Need to be idempotent

STM libs for the [VM

» Akka (Java/Scala)

* Multiverse (Java)

* Clojure STM (Clojure)
* CCSTM (Scala)
*Deuce STM (Java)

' “Scalability Patterns:

Behavior

Scalability Patterns:
Behavior

* Event-Driven Architecture
* Compute Grids

* | oad-balancing

* Parallel Computing

Event-Driven
Architecture

“Four years from now, ‘mere mortals’ will begin to
adopt an event-driven architecture (EDA) for the
sort of complex event processing that has been
attempted only by software gurus [until now]”

--Roy Schulte (Gartner), 2003

Event-Driven Architecture

e Domain Events
* Event Sourcing

* Command and Query Responsibility
Segregation (CQRS) pattern

* Event Stream Processing

* Messaging

* Enterprise Service Bus

* Actors

* Enterprise Integration Architecture (EIA)

Domain Events

“It's really become clear to me in the last
couple of years that we need a new building
block and that is the Domain Events”

-- Eric Evans, 2009

Domain Events

“Domain Events represent the state of entities
at a given time when an important event
occurred and decouple subsystems with event
streams. Domain Events give us clearer, more
expressive models in those cases.”

-- Eric Evans, 2009

Domain Events

“State transitions are an important part of
our problem space and should be modeled
within our domain.”

-- Greg Young, 2008

Event Sourcing

Every state change is materialized in an Event
All Events are sent to an EventProcessor
EventProcessor stores all events in an Event Log
System can be reset and Event Log replayed

No need for ORM, just persist the Events

Many different EventListeners can be added to
EventProcessor (or listen directly on the Event log)

Event Sourcing

/—Hosl System

User Interface

hig, req
Uesfs
Ul Commincation
Peer System = Messaing
ye Messages Endpoint

Peer System | sq

Input Tables

add domain event

add domain event

Data Loader

read domain event

Event Processor

Command and Query
Responsibility Segregation
(CQRYS) pattern

“A single model cannot be appropriate
for reporting, searching and
transactional behavior.”

-- Greg Young, 2008

Presentation

Bidirectional

Business

Bidirectional

Data

Presentation

Y

Data Business

)‘ Presentation

Unidirectional Unidirectional

‘ Data \(

\

Business |

Unidirectional

Reporting

Presentation

4

«<

Domain

Queries

Reporting

Presentation

Commands

4

-

Events

Domain

Purchase
Lottery

Find Lottery

Tickets for

Customer Ticket
| Presentation
Queries Commands
\
Reporting Domain
;' Events —|

Lottery
Ticket
Purchased

CQORS

in a nutshell

* All state changes are represented by Domain Events
* Aggregate roots receive Commands and publish Events

* Reporting (query database) is updated as a result of the
published Events

* All Queries from Presentation go directly to Reporting
and the Domain is not involved

Command st '
Handling I
------- Component —_—

Event
Handling

Component

query

Storage

Copyright by Axis Framework

CQRS: Benefits

® Fully encapsulated domain that only exposes
behavior

Queries do not use the domain model
No object-relational impedance mismatch
Bullet-proof auditing and historical tracing
Easy integration with external systems

Performance and scalability

Event Stream Processing
(oo)

N J

W5(150) —p» ><

Wg(300) —p»

Incoming Events Amozi:g;ZOO Length Window — 5 Events New Events l Old Events ‘
W,(500) ol [v T j " | ’
| |

| |

W2(100) o >< [\M] | |
S— SN £ I— £ S— : | |

| |

Waton) ” " \ " | |
) | |

.......................) | |

...................................) | |

| |

| |

| |

| |

| |

| |

| |

W4(50) ——p» >< (Wa w, |
(
(

Time

select * from
Withdrawal (amount>»=200).win:length(5)

Event Stream Processing
Products

® Esper (Open Source)
® StreamBase

® RuleCast

Messaging

® Publish-Subscribe
® Point-to-Point
® Store-forward

® Request-Reply

Publish-Subscribe

S

- (o)
e —

eceiver

Point-to-Point

S

ender queue > Receiver
- e —

Store-Forward

Durability, event log, auditing etc.

Sender

Mediator

*’

Y

<l N
~—

Storage

—

Receiver

Request-Reply

Fe.AMQP’s ‘replyTo’ header

Request

Request Reply

Messaging

® Standards:
e AMQP
o |MS

® Products:
e RabbitMQ (AMQP)
® ActiveMQ (JMS)
® Tibco
® MQSeries

® etc

ESB

mmt %&%

.................................‘ ‘.................................“

ESB products

® ServiceMix (Open Source)
® Mule (Open Source)

® Open ESB (Open Source)
® Sonic ESB

® WebSphere ESB

® Oracle ESB

® Tibco

® BizTalk Server

Actors

® Fire-forget
® Async send

® Fire-And-Receive-Eventually

® Async send + wait on Future for reply

Enterprise Integration
Patterns

74

ENTERPRISE &, 7)8;:;

¥,

INTEGRATION ™
PATTERNS

GREGOR HOHPE

Bosy WoOOLF

WitH CONTRIBUTIONS BY

KYLE BROWN
CONRAD E D'Cruz
MARTIN FOWLER
SEAN NEVILLE
MICHAEL J. RETTIG
JONATHAN SIMON

Forewords by John Crupi and Martin Fowler

Enterprise Integration
Patterns

Apache Camel

® More than 80 endpoints
® XML (Spring) DSL

® Scala DSL

Compute Grids

Compute Grids

Parallel execution

® Divide and conquer
|. Split up job in independent tasks
2. Execute tasks in parallel

3. Aggregate and return result

® MapReduce - Master/Worker

Compute Grids

Parallel execution

® Automatic provisioning
® | oad balancing
® Fail-over

® Jopology resolution

Compute Grids

Products

® Platform

® DataSynapse

® Google MapReduce
® Hadoop

® GigaSpaces

® GridGain

© Bob Elsdale

Load balancing

® Random allocation
® Round robin allocation
® Weighted allocation

® Dynamic load balancing

® | east connections
® |eastserver CPU

® etc.

Load balancing

® DNS Round Robin (simplest)
® Ask DNS for IP for host

® Geta new IP every time

® Reverse Proxy (better)

® Hardware Load Balancing

Load balancing products

® Reverse Proxies:

® Apache mod_ proxy (OSS)
® HAProxy (OSS)
® Squid (OSS)
® Nginx (OSS)
® Hardware Load Balancers:

o BIG-|P

® (Cisco

Parallel Computing

Parallel Computing

* SPMD Pattern

* Master/Worker Pattern
* Loop Parallelism Pattern
* Fork/Join Pattern

* MapReduce Pattern

 UE: Unit of Execution
* Process
* Thread
e Coroutine
e Actor

SPMD Pattern

* Single Program Multiple Data

* Very generic pattern, used in many
other patterns

* Use a single program for all the UEs

* Use the UE’s ID to select different
pathways through the program. Fe:

* Branching on ID
* Use ID in loop index to split loops

* Keep interactions between UEs explicit

MASTER WORKER

Initiate
computation

v

set up problem

v

create bag of
tasks

v

launch workers

/

initialize

Y

compute results

Y

Master/VVorker

exi

collect results

v

terminate
computation

\

Master/VWorker

* Good scalability
* Automatic load-balancing

e How to detect termination?

* Bag of tasks is empty
* Poison pill

* If we bottleneck on single queue?

* Use multiple work queues
* Work stealing

* What about fault tolerance?

e Use “in-progress” queue

Loop Parallelism

* Workflow

| .Find the loops that are bottlenecks
2.Eliminate coupling between loop iterations
3.Parallelize the loop

* If too few iterations to pull its weight
* Merge loops
e Coalesce nested loops

* OpenMP

e OMp parallel for

What if task creation can’t be handled by:

e parallelizing loops (Loop Parallelism)
 putting them on work queues (Master/Worker)

What if task creation can’t be handled by:

e parallelizing loops (Loop Parallelism)
 putting them on work queues (Master/Worker)

Enter
Fork/]oin

Fork/]oin

* Use when relationship between tasks
is simple

* Good for recursive data processing

* Can use work-stealing

|. Fork: Tasks are dynamically created

2. Join: Tasks are later terminated and
data aggregated

Fork/]oin

*Direct task/UE mapping

* |-1 mapping between Task/UE
* Problem: Dynamic UE creation is expensive

* Indirect task/UE mapping

* Pool the UE
e Control (constrain) the resource allocation
* Automatic load balancing

Fork/]oin

Java 7 ParallelArray (Fork/Join DSL)

Fork/]oin

Java 7 ParallelArray (Fork/Join DSL)

ParallelArray students =
new ParallelArray(fjPool, data);

double bestGpa = students.withFilter(isSenior)

.withMapping(selectGpa)
.max();

MapReduce

* Origin from Google paper 2004

* Used internally @ Google

* Variation of Fork/Join

* Work divided upfront not dynamically

* Usually distributed

* Normally used for massive data crunching

MapReduce

Products

* Hadoop (OSS), used @ Yahoo
* Amazon Elastic MapReduce

* Many NOSQL DBs utilizes it
for searching/querying

Input

MapReduce

The overall MapReduce word count process

Splitting

Mapping

Deer Bear River

Deer, 1
- » Bear, 1

Deer Bear River
Car Car River
Deer Car Bear

River, 1

Car, 1

Car Car River

» Car, 1

River, 1

Deer, 1

Deer Car Bear

L » Car, 1

Bear, 1

River, 1

Shuffling Reducing Final result
Bear, 1 » Bear, 2
» Bear, 1
o«
/w| Car,1
91 Car,1 ———— »| Car,3 ——» Bear,?2
< Car, 1 Car, 3
vl Deer, 2
R River, 2
4 Deer,1 ——»{ Deer,2 —»
v Deer, 1 v
River, 1 —— - River, 2

Parallel Computing

products

* MPI

* OpenMP

* |SR166 Fork/Join

* java.util.concurrent

* ExecutorService, BlockingQueue etc.

* ProActive Parallel Suite
* Common] WorkManager (JEE)

l . Stability Patterns

Stability Patterns

* [imeouts

e Circuit Breaker
* et-it-crash

* Fail fast

* Bulkheads

* Steady State

* Throttling

Timeouts

Always use timeouts (if possible):

® Thread.wait(timeout)
® reentrantLock.trylLock

® blockingQueue.poll(timeout, timeUnit)/
offer(..)

® futureTask.get(timeout, timeUnit)

® socket.setSoTimeOut(timeout)

® etc.

Circuit Breaker

Closed
on call / pass through

call succeeds / reset count

call fails / count failure

trip breaker

-

threshold reached / trip breaker

reset

Open

on call / fail
on timeout / attempt reset

attempt reset

trip breaker

(

Half-Open

on call / pass through
call succeeds / reset
call fails / trip breaker

_

Let it crash

® Embrace failure as a natural state in
the life-cycle of the application

® |nstead of trying to prevent it;
manage it

® Process supervision

® Supervisor hierarchies (from Erlang)

Restart Strategy
OneForOne

Restart Strategy
OneForOne

"

Restart Strategy
OneForOne

Restart Strategy
AllForOne

Restart Strategy
AllForOne

“d e

Restart Strategy
AllForOne

Restart Strategy
AllForOne

Supervisor Hierarchies

"o o
¢ oe

Supervisor Hierarchies

e
=y

Supervisor Hierarchies

N

Supervisor Hierarchies

"o o
¢ oe

Fail fast

® Avoid “slow responses”

® Separate:

e SystemError - resources not available

e ApplicationError - bad user input etc

® Verify resource availability before
starting expensive task

® |nhput validation immediately

Bulkheads

CEE R s

I

=
Tera T HIETR Y

{ ') 1] ") - -
, T R N B TS N e SDESOSTE NN B \
et el ey 4 ' 4!, FAY f : A 4 i ; i oy + -y O s B A ey e RS g ;_.__ -)
< ::._ }_] {L e R o > | 1 {5 G :j‘ . | e i 1Te ! 1 s — s ST B S
" r e e e <t e e P) . A b e — SR ¢ - k.
o Dyt | P =, - ' Y 'y 1" ek e cors e 8 3T b AT B R B B BT R Iy, 2 L 3
drrazrasdapin ordor Sen SR RS TSI B AT A S R TS i Tiv715 lyveieieist ik [Potvei Ty Reh BEskicapi At Vo
=L - e ——
f— ——— - -
- rowp- v.oanA AR Lm A : - ";
Weows ceadd - Aoy B, —— -k -*\.""'Q‘ "ON'IIQ-' .\
e ———— S~
XY -
J WAIBEN AR L evia [~ vane ""L, \ SEAT SFEX
| — e = v R e pta—— T »
! sercad il aw I ACI TR o { 1 ool e oud »
fo— ot ; : - o
waarmS —— Sap. g 2' '\ " B '.::qv-.-:y‘%-‘w .
NS M
| ﬂmm T el e 22 [0 N
y
N - Ve : JL - /!
) —
— et M el B - — “:.)
< T TR e
- S—— [SR |
"~ - —
~ e il
{ \4@ .t L CLan oV ERa v
PR ENADE DECA A

Bulkheads

Foo Bar
® Partition and tolerate . -
failure in one part

® Redundancy

® Applies to threads as well:

Foo Bar

® One pool for admin tasks
to be able to perform tasks .
even though all threads are

vV V
Baz B Baz
blocked Pool 1 aZ | Pool 2
_ Y,

Steady State

® Clean up after you

® | ogging:
® RollingFileAppender (log4j)
® |ogrotate (Unix)
® Scribe - server for aggregating streaming log data

® Always put logs on separate disk

Throttling

® Maintain a steady pace
® Count requests
® |[f limit reached, back-off (drop, raise error)

® Queue requests

® Used in for example Staged Event-Driven
Architecture (SEDA)

.__> . Queue 1 ’ Queue 2)—» [..] —>©

' thanks

for listening

Extra material

Client-side consistency

® Strong consistency
® Weak consistency
® Eventually consistent

® Never consistent

Client-side
Eventual Consistency levels

® Casual consistency

® Read-your-writes consistency (important)
® Session consistency

® Monotonic read consistency (important)

® Monotonic write consistency

Server-side consistency

[

LN = the number of nodes that store replicas of
the data

[

LW = the number of replicas that need to

acknowledge the receipt of the update before the
update completes

[

LR = the number of replicas that are contacted
when a data object is accessed through a read operation

Server-side consistency

W + R > N strong consistency

W + R <= N eventual consistency

