
Scalability,
Availability &

Stability
Patterns
Jonas Bonér
CTO Typesafe
twitter: @jboner

Outline

Outline

Outline

Outline

Outline

Introduction

Scalability Patterns

Managing Overload

Scale up vs Scale out?

General
recommendations

• Immutability as the default

• Referential Transparency (FP)

• Laziness

• Think about your data:
• Different data need different guarantees

Scalability Trade-offs

Trade-offs

•Performance vs Scalability

•Latency vs Throughput

•Availability vs Consistency

Performance
vs

Scalability

How do I know if I have a
performance problem?

How do I know if I have a
performance problem?

If your system is
slow for a single user

How do I know if I have a
scalability problem?

How do I know if I have a
scalability problem?

If your system is
fast for a single user

but slow under heavy load

Latency
vs

Throughput

You should strive for

maximal throughput
with

acceptable latency

Availability
vs

Consistency

Brewer’s

CAP
theorem

You can only pick 2

 Consistency

 Availability

 Partition tolerance

At a given point in time

Centralized system
• In a centralized system (RDBMS etc.)

we don’t have network partitions, e.g.
P in CAP

• So you get both:

•Availability

•Consistency

Atomic

Consistent

Isolated

Durable

Distributed system
• In a distributed system we (will) have

network partitions, e.g. P in CAP

• So you get to only pick one:

•Availability

•Consistency

CAP in practice:
• ...there are only two types of systems:

1. CP

2. AP

• ...there is only one choice to make. In
case of a network partition, what do
you sacrifice?
1. C: Consistency

2. A: Availability

Basically Available

Soft state

Eventually consistent

Eventual Consistency
...is an interesting trade-off

Eventual Consistency
...is an interesting trade-off

But let’s get back to that later

Availability Patterns

•Fail-over
•Replication

• Master-Slave
• Tree replication
• Master-Master
• Buddy Replication

Availability Patterns

What do we mean with
Availability?

Fail-over

Fail-over

Copyright
Michael Nygaard

Fail-over

But fail-over is not always this simple
Copyright

Michael Nygaard

Fail-over

Copyright
Michael Nygaard

Fail-back

Copyright
Michael Nygaard

Network fail-over

Replication

• Active replication - Push

• Passive replication - Pull

• Data not available, read from peer,
then store it locally

• Works well with timeout-based
caches

Replication

• Master-Slave replication

• Tree Replication

• Master-Master replication

• Buddy replication

Replication

Master-Slave Replication

Master-Slave Replication

Tree Replication

Master-Master Replication

Buddy Replication

Buddy Replication

Scalability Patterns:
State

•Partitioning
•HTTP Caching
•RDBMS Sharding
•NOSQL
•Distributed Caching
•Data Grids
•Concurrency

Scalability Patterns: State

Partitioning

HTTP Caching
Reverse Proxy

• Varnish

• Squid

• rack-cache

• Pound

• Nginx

• Apache mod_proxy

• Traffic Server

HTTP Caching
CDN, Akamai

Generate Static Content
Precompute content

• Homegrown + cron or Quartz

• Spring Batch

• Gearman

• Hadoop

• Google Data Protocol

• Amazon Elastic MapReduce

HTTP Caching
First request

HTTP Caching
Subsequent request

Service of Record
SoR

Service of Record

• Relational Databases (RDBMS)

• NOSQL Databases

How to
scale out
RDBMS?

Sharding

•Partitioning

•Replication

Sharding: Partitioning

Sharding: Replication

ORM + rich domain model
anti-pattern

•Attempt:

• Read an object from DB

•Result:

• You sit with your whole database in your lap

Think about your data

• When do you need ACID?

• When is Eventually Consistent a better fit?

• Different kinds of data has different needs

Think again

When is
a RDBMS

not
good enough?

Scaling reads
to a RDBMS

is hard

Scaling writes
to a RDBMS

is impossible

Do we
really need
a RDBMS?

Do we
really need
a RDBMS?

Sometimes...

Do we
really need
a RDBMS?

Do we
really need
a RDBMS?

But many times we don’t

NOSQL
(Not Only SQL)

•Key-Value databases
•Column databases
•Document databases
•Graph databases
•Datastructure databases

NOSQL

Who’s ACID?

• Relational DBs (MySQL, Oracle, Postgres)

• Object DBs (Gemstone, db4o)

• Clustering products (Coherence,
Terracotta)

• Most caching products (ehcache)

Who’s BASE?

Distributed databases

• Cassandra

• Riak

• Voldemort

• Dynomite,

• SimpleDB

• etc.

• Google: Bigtable
• Amazon: Dynamo
• Amazon: SimpleDB
• Yahoo: HBase
• Facebook: Cassandra
• LinkedIn: Voldemort

NOSQL in the wild

But first some background...

• Distributed Hash Tables (DHT)
• Scalable
• Partitioned
• Fault-tolerant
• Decentralized
• Peer to peer
• Popularized

• Node ring
• Consistent Hashing

Chord & Pastry

Node ring with Consistent Hashing

Find data in log(N) jumps

“How can we build a DB on top of Google
File System?”

• Paper: Bigtable: A distributed storage system
for structured data, 2006

• Rich data-model, structured storage
• Clones:

HBase
Hypertable
Neptune

Bigtable

“How can we build a distributed
hash table for the data center?”

• Paper: Dynamo: Amazon’s highly available key-
value store, 2007

• Focus: partitioning, replication and availability
• Eventually Consistent
• Clones:

Voldemort
Dynomite

Dynamo

Types of NOSQL stores

• Key-Value databases (Voldemort, Dynomite)

• Column databases (Cassandra, Vertica, Sybase IQ)

• Document databases (MongoDB, CouchDB)

• Graph databases (Neo4J, AllegroGraph)

• Datastructure databases (Redis, Hazelcast)

Distributed Caching

•Write-through
•Write-behind
•Eviction Policies
•Replication
•Peer-To-Peer (P2P)

Distributed Caching

Write-through

Write-behind

Eviction policies

• TTL (time to live)

• Bounded FIFO (first in first out)

• Bounded LIFO (last in first out)

• Explicit cache invalidation

Peer-To-Peer

• Decentralized

• No “special” or “blessed” nodes

• Nodes can join and leave as they please

•EHCache
• JBoss Cache
•OSCache
•memcached

Distributed Caching
Products

memcached
• Very fast

• Simple

• Key-Value (string -­‐>	
 binary)

• Clients for most languages

• Distributed

• Not replicated - so 1/N chance
for local access in cluster

Data Grids / Clustering

Data Grids/Clustering
Parallel data storage

• Data replication

• Data partitioning

• Continuous availability

• Data invalidation

• Fail-over

• C + P in CAP

Data Grids/Clustering
Products

• Coherence

• Terracotta

• GigaSpaces

• GemStone

• Tibco Active Matrix

• Hazelcast

Concurrency

•Shared-State Concurrency
•Message-Passing Concurrency
•Dataflow Concurrency
•Software Transactional Memory

Concurrency

Shared-State
Concurrency

•Everyone can access anything anytime
•Totally indeterministic
• Introduce determinism at well-defined
places...

• ...using locks

Shared-State Concurrency

•Problems with locks:
• Locks do not compose
• Taking too few locks
• Taking too many locks
• Taking the wrong locks
• Taking locks in the wrong order
• Error recovery is hard

Shared-State Concurrency

Please use java.util.concurrent.*
• ConcurrentHashMap
• BlockingQueue
• ConcurrentQueue	

• ExecutorService
• ReentrantReadWriteLock
• CountDownLatch
• ParallelArray
• and	
 much	
 much	
 more..

Shared-State Concurrency

Message-Passing
Concurrency

•Originates in a 1973 paper by Carl
Hewitt

• Implemented in Erlang, Occam, Oz
•Encapsulates state and behavior
•Closer to the definition of OO
than classes

Actors

Actors
• Share NOTHING
• Isolated lightweight processes
• Communicates through messages
• Asynchronous and non-blocking
• No shared state
 … hence, nothing to synchronize.
• Each actor has a mailbox (message queue)

• Easier to reason about
• Raised abstraction level
• Easier to avoid

–Race conditions
–Deadlocks
–Starvation
–Live locks

Actors

• Akka (Java/Scala)
• scalaz actors (Scala)
• Lift Actors (Scala)
• Scala Actors (Scala)
• Kilim (Java)
• Jetlang (Java)
• Actor’s Guild (Java)
• Actorom (Java)
• FunctionalJava (Java)
• GPars (Groovy)

Actor libs for the JVM

Dataflow
Concurrency

• Declarative
• No observable non-determinism
• Data-driven – threads block until

data is available
• On-demand, lazy
• No difference between:

• Concurrent &
• Sequential code

• Limitations: can’t have side-effects

Dataflow Concurrency

STM:
Software

Transactional Memory

STM: overview
• See the memory (heap and stack)

as a transactional dataset
• Similar to a database

• begin
• commit
• abort/rollback

• Transactions are retried
automatically upon collision

• Rolls back the memory on abort

• Transactions can nest
• Transactions compose (yipee!!)
 atomic	
 {	
 	
 	

	
 	
 	
 	
 ...	
 	
 	

	
 	
 	
 	
 atomic	
 {	
 	
 	
 	

	
 	
 	
 	
 	
 	
 ...	
 	
 	
 	

	
 	
 	
 	
 }	
 	

	
 	
 }

STM: overview

All operations in scope of
a transaction:
l Need to be idempotent

STM: restrictions

• Akka (Java/Scala)
• Multiverse (Java)
• Clojure STM (Clojure)
• CCSTM (Scala)
• Deuce STM (Java)

STM libs for the JVM

Scalability Patterns:
Behavior

•Event-Driven Architecture
•Compute Grids
•Load-balancing
•Parallel Computing

Scalability Patterns:
Behavior

Event-Driven
Architecture

“Four years from now, ‘mere mortals’ will begin to
adopt an event-driven architecture (EDA) for the
sort of complex event processing that has been
attempted only by software gurus [until now]”

 --Roy Schulte (Gartner), 2003

• Domain Events
• Event Sourcing
• Command and Query Responsibility

Segregation (CQRS) pattern
• Event Stream Processing
• Messaging
• Enterprise Service Bus
• Actors
• Enterprise Integration Architecture (EIA)

Event-Driven Architecture

Domain Events

“It's really become clear to me in the last
couple of years that we need a new building
block and that is the Domain Events”

 -- Eric Evans, 2009

Domain Events

“Domain Events represent the state of entities
at a given time when an important event
occurred and decouple subsystems with event
streams. Domain Events give us clearer, more
expressive models in those cases.”

 -- Eric Evans, 2009

Domain Events

“State transitions are an important part of
our problem space and should be modeled
within our domain.”

 -- Greg Young, 2008

Event Sourcing
• Every state change is materialized in an Event

• All Events are sent to an EventProcessor

• EventProcessor stores all events in an Event Log

• System can be reset and Event Log replayed

• No need for ORM, just persist the Events

• Many different EventListeners can be added to
EventProcessor (or listen directly on the Event log)

Event Sourcing

“A single model cannot be appropriate
for reporting, searching and
transactional behavior.”

 -- Greg Young, 2008

 Command and Query
Responsibility Segregation

(CQRS) pattern

Bidirectional

Bidirectional

UnidirectionalUnidirectional

Unidirectional

CQRS
in a nutshell

• All state changes are represented by Domain Events

• Aggregate roots receive Commands and publish Events

• Reporting (query database) is updated as a result of the
published Events

• All Queries from Presentation go directly to Reporting
and the Domain is not involved

CQRS

Copyright by Axis Framework

CQRS: Benefits

• Fully encapsulated domain that only exposes
behavior

• Queries do not use the domain model

• No object-relational impedance mismatch

• Bullet-proof auditing and historical tracing

• Easy integration with external systems

• Performance and scalability

Event Stream Processing

select	
 *	
 from	

Withdrawal(amount>=200).win:length(5)

Event Stream Processing
Products

• Esper (Open Source)

• StreamBase

• RuleCast

Messaging

• Publish-Subscribe

• Point-to-Point

• Store-forward

• Request-Reply

Publish-Subscribe

Point-to-Point

Store-Forward
Durability, event log, auditing etc.

Request-Reply
F.e. AMQP’s ‘replyTo’ header

Messaging
• Standards:

• AMQP

• JMS

• Products:

• RabbitMQ (AMQP)

• ActiveMQ (JMS)

• Tibco

• MQSeries

• etc

ESB

ESB products
• ServiceMix (Open Source)

• Mule (Open Source)

• Open ESB (Open Source)

• Sonic ESB

• WebSphere ESB

• Oracle ESB

• Tibco

• BizTalk Server

Actors

• Fire-forget

• Async send

• Fire-And-Receive-Eventually

• Async send + wait on Future for reply

Enterprise Integration
Patterns

Enterprise Integration
Patterns

Apache Camel

• More than 80 endpoints

• XML (Spring) DSL

• Scala DSL

Compute Grids

Compute Grids
Parallel execution

• Divide and conquer

1. Split up job in independent tasks

2. Execute tasks in parallel

3. Aggregate and return result

• MapReduce - Master/Worker

Compute Grids
Parallel execution

• Automatic provisioning

• Load balancing

• Fail-over

• Topology resolution

Compute Grids
Products

• Platform

• DataSynapse

• Google MapReduce

• Hadoop

• GigaSpaces

• GridGain

Load balancing

• Random allocation

• Round robin allocation

• Weighted allocation

• Dynamic load balancing

• Least connections

• Least server CPU

• etc.

Load balancing

Load balancing

• DNS Round Robin (simplest)

• Ask DNS for IP for host

• Get a new IP every time

• Reverse Proxy (better)

• Hardware Load Balancing

Load balancing products

• Reverse Proxies:

• Apache mod_proxy (OSS)

• HAProxy (OSS)

• Squid (OSS)

• Nginx (OSS)

• Hardware Load Balancers:

• BIG-IP

• Cisco

Parallel Computing

• UE: Unit of Execution
• Process
• Thread
• Coroutine
• Actor

Parallel Computing
• SPMD Pattern
• Master/Worker Pattern
• Loop Parallelism Pattern
• Fork/Join Pattern
• MapReduce Pattern

SPMD Pattern
• Single Program Multiple Data
• Very generic pattern, used in many

other patterns
• Use a single program for all the UEs
• Use the UE’s ID to select different

pathways through the program. F.e:
• Branching on ID
• Use ID in loop index to split loops

• Keep interactions between UEs explicit

Master/Worker

Master/Worker
• Good scalability
• Automatic load-balancing
• How to detect termination?

• Bag of tasks is empty
• Poison pill

• If we bottleneck on single queue?
• Use multiple work queues
• Work stealing

• What about fault tolerance?
• Use “in-progress” queue

Loop Parallelism
•Workflow

1.Find the loops that are bottlenecks
2.Eliminate coupling between loop iterations
3.Parallelize the loop

•If too few iterations to pull its weight
• Merge loops

• Coalesce nested loops

•OpenMP
• omp	
 parallel	
 for

What if task creation can’t be handled by:
• parallelizing loops (Loop Parallelism)

• putting them on work queues (Master/Worker)

What if task creation can’t be handled by:
• parallelizing loops (Loop Parallelism)

• putting them on work queues (Master/Worker)

Enter
Fork/Join

•Use when relationship between tasks
is simple

•Good for recursive data processing
•Can use work-stealing

1. Fork: Tasks are dynamically created
2. Join: Tasks are later terminated and
data aggregated

Fork/Join

Fork/Join

•Direct task/UE mapping
• 1-1 mapping between Task/UE

• Problem: Dynamic UE creation is expensive

•Indirect task/UE mapping
• Pool the UE
• Control (constrain) the resource allocation

• Automatic load balancing

Java 7 ParallelArray (Fork/Join DSL)

Fork/Join

Java 7 ParallelArray (Fork/Join DSL)

ParallelArray	
 students	
 =	

	
 	
 new	
 ParallelArray(fjPool,	
 data);

double	
 bestGpa	
 =	
 students.withFilter(isSenior)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .withMapping(selectGpa)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .max();

Fork/Join

• Origin from Google paper 2004
• Used internally @ Google
• Variation of Fork/Join
• Work divided upfront not dynamically
• Usually distributed
• Normally used for massive data crunching

MapReduce

• Hadoop (OSS), used @ Yahoo
• Amazon Elastic MapReduce
• Many NOSQL DBs utilizes it

for searching/querying

MapReduce
Products

MapReduce

Parallel Computing
products

• MPI
• OpenMP
• JSR166 Fork/Join
• java.util.concurrent

• ExecutorService, BlockingQueue etc.

• ProActive Parallel Suite
• CommonJ WorkManager (JEE)

Stability Patterns

•Timeouts
•Circuit Breaker
•Let-it-crash
•Fail fast
•Bulkheads
•Steady State
•Throttling

Stability Patterns

Timeouts

Always use timeouts (if possible):
• Thread.wait(timeout)

• reentrantLock.tryLock

• blockingQueue.poll(timeout,	
 timeUnit)/
offer(..)

• futureTask.get(timeout,	
 timeUnit)

• socket.setSoTimeOut(timeout)

• etc.

Circuit Breaker

Let it crash

• Embrace failure as a natural state in
the life-cycle of the application

• Instead of trying to prevent it;
manage it

• Process supervision

• Supervisor hierarchies (from Erlang)

Restart Strategy
OneForOne

Restart Strategy
OneForOne

Restart Strategy
OneForOne

Restart Strategy
AllForOne

Restart Strategy
AllForOne

Restart Strategy
AllForOne

Restart Strategy
AllForOne

Supervisor Hierarchies

Supervisor Hierarchies

Supervisor Hierarchies

Supervisor Hierarchies

Fail fast

• Avoid “slow responses”

• Separate:

• SystemError - resources not available

• ApplicationError - bad user input etc

• Verify resource availability before
starting expensive task

• Input validation immediately

Bulkheads

Bulkheads

• Partition and tolerate
failure in one part

• Redundancy

• Applies to threads as well:

• One pool for admin tasks
to be able to perform tasks
even though all threads are
blocked

Steady State

• Clean up after you

• Logging:

• RollingFileAppender (log4j)

• logrotate (Unix)

• Scribe - server for aggregating streaming log data

• Always put logs on separate disk

Throttling
• Maintain a steady pace

• Count requests

• If limit reached, back-off (drop, raise error)

• Queue requests

• Used in for example Staged Event-Driven
Architecture (SEDA)

?

thanks
for listening

Extra material

Client-side consistency

• Strong consistency

• Weak consistency

• Eventually consistent

• Never consistent

Client-side
Eventual Consistency levels

• Casual consistency

• Read-your-writes consistency (important)

• Session consistency

• Monotonic read consistency (important)

• Monotonic write consistency

Server-side consistency

N = the number of nodes that store replicas of
the data

W = the number of replicas that need to
acknowledge the receipt of the update before the
update completes

R = the number of replicas that are contacted
when a data object is accessed through a read operation

Server-side consistency

W + R > N strong consistency

W + R <= N eventual consistency

